Semi-Supervised Classification Based on Low Rank Representation

نویسندگان

  • Xuan Hou
  • Guangjun Yao
  • Jun Wang
چکیده

Graph-based semi-supervised classification uses a graph to capture the relationship between samples and exploits label propagation techniques on the graph to predict the labels of unlabeled samples. However, it is difficult to construct a graph that faithfully describes the relationship between high-dimensional samples. Recently, low-rank representation has been introduced to construct a graph, which can preserve the global structure of high-dimensional samples and help to train accurate transductive classifiers. In this paper, we take advantage of low-rank representation for graph construction and propose an inductive semi-supervised classifier called Semi-Supervised Classification based on Low-Rank Representation (SSC-LRR). SSC-LRR first utilizes a linearized alternating direction method with adaptive penalty to compute the coefficient matrix of low-rank representation of samples. Then, the coefficient matrix is adopted to define a graph. Finally, SSC-LRR incorporates this graph into a graph-based semi-supervised linear classifier to classify unlabeled samples. Experiments are conducted on four widely used facial datasets to validate the effectiveness of the proposed SSC-LRR and the results demonstrate that SSC-LRR achieves higher accuracy than other related methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Low-Rank Coding with b-Matching Constraint for Semi-Supervised Classification

Graph based semi-supervised learning (GSSL) plays an important role in machine learning systems. The most crucial step in GSSL is graph construction. Although several interesting graph construction methods have been proposed in recent years, how to construct an effective graph is still an open problem. In this paper, we develop a novel approach to constructing graph, which is based on low-rank ...

متن کامل

Global Linear Neighborhoods for Efficient Label Propagation

Graph-based semi-supervised learning improves classification by combining labeled and unlabeled data through label propagation. It was shown that the sparse representation of graph by weighted local neighbors provides a better similarity measure between data points for label propagation. However, selecting local neighbors can lead to disjoint components and incorrect neighbors in graph, and thu...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016